Posted on

It’s that time of year to ask again if next year will be the year of IoT

Looking at the world through the prism of a service provider (which I often do in this blog) there are at least three new things coming your way:

  1. UHD where the jury has come in: it’s just a question of when and how UHD will permeate the video ecosystem, the ‘if’ has been decided.
  2. The VR/AR jury is still out and this could be the next living room 3D failure or maybe the future of all entertainment. My advice to my consulting clients in the meantime is to take it seriously and investigate. Even if it flops miserably, it will have first had an impact on the way we think of user experience.
  3. Continue reading It’s that time of year to ask again if next year will be the year of IoT

Posted on

Consolidation in air at Broadband World Forum 2016

Bonding touted as solution to boost bandwidth for fixed and mobile services

Major trade shows can provide useful bell weathers of a given industry and the recent Broadband World Forum 2016 highlighted two notable trends embracing both the fixed and mobile space, one business related and the other technical. For the former, consolidation was a major theme that will only be accentuated by the announcement of AT&T’s bid for Time Warner coming after the show had ended. But there was also a sentiment that consolidation should not be allowed to proceed so far that it inhibits competition and consumer choice, which are essential for any thriving market in our mixed global economy.
Continue reading Consolidation in air at Broadband World Forum 2016

Posted on

Enterprise may drive Internet of Things boom

The Internet of Things (IoT) has reached a critical stage in its evolution where it seems to be caught between two tipping points, waiting for the final explosion after the arrival of joined up applications connecting different domains. The first tipping point came around 2014 with proven single domain applications and the arrival of big players in retail such as Staples, energy utility like British Gas and ADT in premises security. That was also the year Google acquired smart thermostat leader Nest. The big data centre systems companies also piled in but more on the enterprise side, such as IBM with a $3 billion investment early in 2015 in its Watson IoT centre based in Munich.

Since then though the sheen has come off IoT a little with mixed signals from the leading players. Google in particular has struggled rather as it did initially with Android TV, with Nest failing to bring out promised new products and recently calling time on its smart home hub for wireless control of end devices called Revolv, which was launched amid much fanfare in October 2014 but then withdrawn in May 2015. It now looks like Google is pursuing a more distributed approach promoting direct interoperability among its own Nest devices without any intermediate hub, but that is not yet completely clear.

Another big US technology company Intel has also found the IoT sector harder going than it expected with its IoT Group reporting reduced revenue growth and a 25% year on year slump in operating income down to $132 million for 2015. The common theme here is failure of the IoT to break out of its silos so that both companies were left connecting their own things.

British Gas has fared better largely because as an energy utility it started with the expectation that it would be confined to its own domain for a while before branching out into other smart home sectors such as security and environmental control. The company instead is focusing on developing the analytics tools it believes will enable wider success in a future joined up IoT and has been investing in real time processing of the large data sets generated by its Hive connected thermostat. Hive allows users to control their boilers and central heating systems remotely by phone, which generates 30,000 messages a second amounting to 40 TB of static data so far, distributed across 30 nodes. Like Google, British Gas has created a dedicated IoT subsidiary called Connected Home, which has built an open source software stack running on the Apache Cassandra distributed database to process data both in real time and offline.

British Gas then is preparing for IoT’s second tipping point, which will come with joined up services that exploit synergy between different domains. IBM shares this conviction from its enterprise-focused perspective, drawing heavily on its cognitive computing work at its Thomas J. Watson Research Centre in New York, with one line being analysis of data from multiple remote sensors for predictive diagnostics. IBM is already enabling Pratt & Whitney to monitor 4,000 commercial engines and obtain early warning of faults that cause costly service outages if left unfixed until later, even if they are not safety critical.

Telcos are of course also intent on capitalizing on the IoT from their position as broadband providers to homes. One early mover is Paris based SoftAtHome, in which three major Telcos are investors, Orange of France, Swisscom and Etisalat based in the United Arab Emirates. The software developer has extended its home operating platform with CloudAtHome to enable centralized control of devices with potential for integration between domains. All such initiatives must support all the key wireless protocols such as Wi-Fi, Bluetooth and Zigbee that IoT devices such as thermostats use to communicate. SoftAtHome uses a hybrid model combining some form of home hub and data repository with cloud-based processes. Such a hybrid approach aims to deliver the required flexibility, security (and privacy), performance and functional breadth. Flexibility comes from being able to deploy processes in the cloud or at home as appropriate, while keeping sensitive data within the local repository will ensure security and privacy. Performance may require some processes to be performed locally to keep latency down while some features may need cloud components.

A close look at this cloud/home distribution shows that in some cases the cloud should be partitioned between remote processes that may be executed in a distant data centre (what is usually called the cloud) and intermediate ones that might be best run at the network edge. This is known as Fog Computing, where some storage and processing takes place more locally perhaps in a DSLAM or even a street cabinet. The argument is that as IoT takes off, a lot of the initial data collection and analytics will be best performed at a Fog level before in some cases being fed back to the cloud after aggregation.

Fog could also work well for enterprise IoT where it might serve as a campus level control and aggregation layer within a larger cloud based infrastructure. It could also play a role as enterprise IoT becomes customer facing rather than mainly concerned with internal or supply chain operations. This could be a third IoT tipping point bringing together enterprise and consumer IT if a recent survey from Gartner is to be believed. This found that while only 18 percent of today’s enterprise IoT deployments are focused on customer experience, this will jump to 34 per cent over the year to Q1 2017. This represents a threefold absolute jump given that Gartner is forecasting the number of enterprises with IoT deployed somewhere to soar from 29 percent now to 43 per cent in a year’s time. Gartner also expects IoT to expand into new service related industry segments such as insurance beyond the heavier industries like manufacturing, utilities and logistics where it is concentrated now.

Such enterprise IoT forecasts have a history of becoming more accurate than some of the over hyped consumer analyst predictions. This means that if consumer IoT does continue to stall it may be dragged forward by enterprises seeking competitive advantage as well as new revenues, as we are seeing to an extent with the likes of British Gas.

Posted on

“HaLow” sets stage for multi-channel Wi-Fi

The Wi-Fi Alliance’s announcement of the low power version IEEE 802.11ah, dubbed “HaLow”, was dismissed by some analysts as being too late to make a significant impact in the fast growing Internet of Things (sector). That view is wrong and seriously discounts the power and momentum behind Wi-Fi, to the extent that HaLow has already received extensive coverage in the popular as well as technical press. It is already far closer to being a household name than other longstanding contenders as wireless protocols for IoT devices such as Zigbee and Zwave.

It is true that certification of HaLow compliant products will not begin until 2018, but with IoT surging forward on a number of fronts including the smart car, digital home and eHealth, SoC vendors such as Qualcomm are likely to bring out silicon before that. There are good reasons for expecting HaLow to succeed, some relating to its own specifications and others more to do with the overall evolution of Wi-Fi as a whole.

Another factor is the current fragmentation among existing contenders, with a number of other protocols vying alongside Zigbee and Zwave. This may seem to be a reason for not needing yet another protocol but actually means none of the existing ones have gained enough traction to repel a higher profile invader.

More to the point though HaLow has some key benefits over the others, one being its affinity to IP and Internet through being part of Wi-Fi. Zigbee has responded by collaborating with another wireless protocol developer Thread to incorporate IP connectivity. But HaLow has other advantages, including greater range and ability to operate in challenging RF environments. There is already a sense in which the others are having to play catch up even though they have been around for much longer.

It is true that Bluetooth now has its low energy version to overcome the very limited range of the main protocol, but even this is struggling to demonstrate adequate performance over larger commercial sites. The Wi-Fi Alliance claims that HaLow is highly robust and can cope with most real sites from large homes having thick walls containing metal, to concrete warehouse complexes.

 

The big picture is that Wi-Fi is looking increasingly like a multi-channel protocol operating at a range of frequencies to suit differing use cases. To date we have two variants, 2.4 GHz and 5 GHz, which tend to get used almost interchangeably, with the latter doubling up to provide capacity when the former is congested. In future though there will be four channels, still interchangeable but tending to be dedicated to different applications, combining to yield a single coherent standard that will cover all the basses and perhaps vie with LTE outdoors for connecting various embedded IoT and M2M devices.

HaLow comes in at around 900 MHz, which means it has less bandwidth but greater coverage than the higher frequency Wi-Fi bands and has been optimized to cope well with interference both from other radio sources and physical objects. Then we have the very high frequency 802.11ad or WiGig standard coming along at 60 GHz enabling theoretical bit rates of 5 Gbps or more, spearheaded by Qualcomm, Intel and Samsung. WiGig is a further trade-off between speed and coverage and it will most likely be confined to in-room distribution of decoded ultra HD video perhaps from a gateway or set top to a big screen TV or home cinema.

Then the 5 GHz version might serve premium video to other devices around the home, while 2.4 GHz delivers general Internet access. That would leave HaLow to take care of some wearables, sensors and other low power devices that need coverage but only modest bit rates. As it happens HaLow will outperform all the other contenders for capacity except Bluetooth, with which it will be on much of a par.

 

HaLow will be embraced by key vendors in the smart home and IoT arena, such as Paris based SoftAtHome, which already supports the other key wireless protocols in its software platform through its association with relevant hardware and SoC vendors. SoftAtHome can insulate broadband operators from underlying protocols so that they do not have to be dedicated followers of the wireless wars.

AirTies is another vendor with a keen interest as one of the leading providers of Wi-Fi technology for the home, already aiming to deliver the levels of coverage and availability promised by HaLow in the higher 2.4 GHz and 5 GHz bands. It does this by creating a robust mesh from multiple Access Points (APs), to make Wi-Fi work more like a wired point to point network while retaining all the flexibility of wireless.

 

All these trends are pointing towards Wi-Fi becoming a complete quad-channel wireless offering enabling operators to be one stop shops for the digital home of the future, as well as being able to address many IoT requirements outside it.

At the same time it is worth bearing in mind that the IoT and its relative M2M is a very large canvas, extending to remote outdoor locations, some of which are more far challenging for RF signals than almost any home. In any case while HaLow may well see off all-comers indoors, it will only be a contender out doors in areas close to fixed broadband networks. That is why there is so much interest in Heterogeneous Networks (HetNets) combining Wi-Fi with LTE and also why there are several other emerging wireless protocols for longer distance IoT communications.

One of these others is Long Range Wide Area Network (LoRaWAN), a low power wireless networking protocol announced in March 2015, designed for secure two way communication between low-cost battery-powered embedded devices. Like HaLow it runs at sub-GHz frequencies, but in bands reserved for scientific and industrial applications, optimized for penetrating large structures and subsurface infrastructures within a range of 2km. LoRaWAN is backed by a group including Cisco and IBM, as well as some leading Telcos like Bouygues Telecom, KPN, SingTel and Swisscom. The focus is particularly on harsh RF environments previously too challenging or expensive to connect, such as mines, underwater and mountainous terrain.

Another well backed contender is Narrowband-LTE (NB-LTE) announced in September 2015 with Nokia, Ericsson and Intel behind it, where the focus is more on long range and power efficient communications to remote embedded sensors on the ground. So it still looks like being a case of horses for courses given the huge diversity of RF environments where IoT and M2M will be deployed, with HaLow a likely winner indoors, but coexisting with others outside.

Posted on

First 4 trends spotted at IBC14

I didn’t write any prediction on what would be important this year, but while it’s still fresh here are my first impressions

Last year the Cloud was a key buzzword and Amazon was, this year, it’s replaced by Virtualization, basically the same technology, but with the possibility of running all those virtual machines in a service provider’s own data center. It is supposed to lower costs eventually and make things like redundancy management easier, but I’ve yet to be convinced if it’s really such a big deal. I’ll try and stop by some of the encoding booths like Envivio, Harmonic or Elemental to check out where it’s really just a generalization of the concept of software based encoding vs. hardware based encoding.  I’ll also try to get back to the Amazon Web Services stand in hall 3 where they’re explaining how Netflix uses AWS with special tools developed to optimize service availability.

4k has of course been around for several years yet still manages to buzz. I’ve been told to go see Samsung’s giant curved display in hall 1. The main difference from last year is that there’s hardly a booth without a 4K display or two, most now at 60fps and more and more UI’s, like that on display at SoftAtHome’s booth, are now native 4K.

OTT is still very present even if it too has lost its novelty as so many commercial deployments are out there. OTT ecosystem vendors are repositioning frantically as value is eroded. Some like Piksel seem to be keeping their end-to-end positioning, while others like Siemens with its Swipe service are also bringing out specific components to sell as services. Enhanced ABR is also appearing, to help reduce Opex costs, by finding tricks to use only as much bandwidth as is required. All in the CDN crowd like for example Limelight, Anevia, Broadpeak or Media Melon (who don’t have a booth) have things to show in this area.

IoT and the connected and/or smart homes have been around for years in other shows, but have now just made it to IBC. Managing the home network is becoming more challenging for many reasons. One that struck me more is that we are seeing a greater proportion of homes with 100M+ broadband connections, but in-home effective throughputs down to just a few megabits, often not enough to stream over Wi-Fi. There were quite a few solutions at IBC, like AirTies’ home Wi-Fi meshing.

Some trends though are clearly on the way out. I noted for example that it’s already out of fashion to talk about embedded apps now that HTML5 is a no-brainer and any mention of the smart SmarTV is positively 2013.

More soon, stay tuned…